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What is Algorithm?
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An algorithm is any well-defined computational 
procedure that takes some value, or set of 
values, as input and produces some value, or set 
of values, as output. 

Input Output

Sequence  of 
computational 

steps



It solves Computational problems

• A computational problem specifies an input-output 
relationship

• What does the input look like?

• What should the output be for each input?

• Example:
• Input: an integer number N

• Output: Is the number prime?

• Example:
• Input: A list of names of people

• Output: The same list sorted alphabetically

• Example:
• Input: A picture in digital format

• Output: An English description of what the picture shows



Algorithm (many definitions)

An algorithm is an exact specification of how to solve a 
computational problem
An algorithm must specify every step completely, so a 
computer can implement it without any further 
“understanding”
An algorithm must work for all possible inputs of the problem.
Algorithms must be:

Correct: For each input produce an appropriate output
Efficient: run as quickly as possible, and use as little memory 
as possible – more about this later

There can be many different algorithms for each 
computational problem.



Describing Algorithm

•Algorithms can be implemented in any 
programming language

•Usually we use “pseudo-code” to describe 
algorithms

Testing whether input N is prime:

For j = 2 .. N-1
If j|N

Output “N is composite” and halt
Output “N is prime”



Greatest Common Divisor

•The first algorithm “invented” in history was 
Euclid’s algorithm for finding the greatest common 
divisor (GCD) of two natural numbers

•Definition: The GCD of two natural numbers x, y
is the largest integer j that divides both (without 
remainder).  i.e. j|x, j|y and j is the largest integer 
with this property.

•The GCD Problem:
• Input: natural numbers x, y
• Output: GCD(x,y) – their GCD



Euclid’s GCD algorithm

public static int gcd(int x, int y) {
while (y!=0) {
int temp = x%y;
x = y;
y = temp;

}
return x;

}



Euclid’s GCD algorithm
while (y!=0) {

int temp = x%y;

x = y;

y = temp;

}

Example: Computing GCD(72,120)

temp     x       y     

After 0 rounds      -- 72      120     

After 1 round       72      120     72

After 2 rounds      48      72      48

After 3 rounds      24      48      24

After 4 rounds      0       24      0  

Output: 24



Square Root

•The problem we want to address is to compute 
the square root of a real number.

•When working with real numbers, we can not 
have complete precision.  

• The inputs will be given in finite precision
• The outputs should only be computed approximately

•The square root problem:
• Input: a positive real number x, and a precision 

requirement 
• Output: a real number r such that |r-x|



Square Root Algorithm

public static double sqrt(double x, 
double epsilon){
double low = 0;
double high = x>1 ? x : 1;
while (high-low > epsilon) {
double mid = (high+low)/2;
if (mid*mid > x)

high = mid;
else

low = mid;
}
return low;

}



Binary Search Algorithm – sample run 

Example: Computing sqrt(2) with precision 0.05:

mid      mid*mid     low       high     

After 0 rounds      -- -- 0         2

After 1 round        1         1         1         2

After 2 rounds      1.5       2.25       1         1.5

After 3 rounds      1.25      1.56..     1.25      1.5

After 4 rounds      1.37..    1.89..     1.37..    1.5

After 5 rounds      1.43..    2.06..     1.37..    1.43..

After 6 rounds      1.40..    1.97..     1.40..    1.43..

Output: 1.40…

while (high-low > epsilon) {

double mid = (high+low)/2;

if (mid*mid > x)

high = mid;

else

low = mid;

}



How fast will your program run?

• The running time of your program will depend upon:
• The algorithm

• The input

• Your implementation of the algorithm in a programming 
language

• The compiler you use

• The OS on your computer

• Your computer hardware

• Maybe other things: temperature outside; other programs on 
your computer; …

• Our Motivation: analyze the running time of an algorithm 
as a function of only simple parameters of the input.



Basic idea: counting operations

• Each algorithm performs a sequence of basic operations:
• Arithmetic:        (low + high)/2

• Comparison:     if ( x > 0 ) … 

• Assignment:      temp = x

• Branching:         while ( true ) { … }

• …

• Idea: count the number of basic operations performed on 
the input.

• Difficulties:
• Which operations are basic?

• Not all operations take the same amount of time.

• Operations take different times with different hardware or 
compilers



Testing operation times on your system
import java.util.*;

public class PerformanceEvaluation {

public static void main(String[] args) {

int i=0;   double d = 1.618;

SimpleObject o = new SimpleObject();

final int numLoops = 1000000;

long startTime = System.currentTimeMillis();;

for (i=0 ; i<numLoops ; i++){

// put here a command to be timed

}

long endTime = System.currentTimeMillis();

long duration = endTime - startTime;

double iterationTime =  (double)duration / numLoops;

System.out.println("duration: "+duration);

System.out.println("sec/iter: "+iterationTime);

}}

class SimpleObject {

private int x=0;

public void m() { x++; }

}



Sample running times of basic Java 
operations
Operation                Loop Body               nSec/iteration

Sys1                Sys2

Sys1: PII, 333MHz, jdk1.1.8, -nojit

Sys2: PIII, 500MHz, jdk1.3.1

Loop Overhead ; 196 10

Double division d = 1.0 / d; 400 77

Method call o.m(); 372 93

Object Construction o=new 
SimpleObject();

1080 110



Asymptotic running times

• Operation counts are only problematic in terms of constant 
factors.

• The general form of the function describing the running time 
is invariant over hardware, languages or compilers!

• Running time is “about” .  

• We use “Big-O” notation, and say that the running time is  O(  )

2N

public static int myMethod(int N){

int sq = 0;

for(int j=0; j<N ; j++)

for(int k=0; k<N ; k++)

sq++;

return sq;

}

2N



Asymptotic behavior of functions



Mathematical Formalization

• Definition: Let f and g be functions from the natural 
numbers to the natural numbers.  We write f=O(g) if 
there exists a constant c such that for all n: f(n)  cg(n).  

f=O(g)   c n: f(n)  cg(n)

• This is a mathematically formal way of ignoring 
constant factors, and looking only at the “shape” of the 
function.

• f=O(g) should be considered as saying that “f is at most 
g, up to constant factors”.

• We usually will have f be the running time of an 
algorithm and g a nicely written function.  E.g. The 
running time of the previous algorithm was O(N^2).



Asymptotic analysis of algorithms

• We usually embark on an asymptotic worst case
analysis of the running time of the algorithm.

• Asymptotic: 
• Formal, exact, depends only on the algorithm

• Ignores constants

• Applicable mostly for large input sizes

• Worst Case:
• Bounds on running time must hold for all inputs.

• Thus the analysis considers the worst-case input.

• Sometimes the “average” performance can be much better

• Real-life inputs are rarely “average” in any formal sense



The running time of Euclid’s GCD 
Algorithm
• How fast does Euclid’s algorithm terminate?

• After the first iteration we have that x > y.  In each 
iteration, we replace (x, y) with (y, x%y).  

• In an iteration where x>1.5y then x%y < y < 2x/3.

• In an iteration where x  1.5y then x%y  y/2 < 2x/3.

• Thus, the value of xy decreases by a factor of at least 2/3
each iteration (except, maybe, the first one).  

public static int gcd(int x, int y) {

while (y!=0) {

int temp = x%y;

x = y;

y = temp;

}

return x;

}



The running time of Euclid’s Algorithm

• Theorem: Euclid’s GCD algorithm runs it time O(N), where N is the 
input length (N=log2x + log2y).

• Proof:

• Every iteration of the loop (except maybe the first) the value of 
xy decreases by a factor of at least 2/3.  Thus after k+1
iterations the value of xy is at most               the original value.

• Thus the algorithm must terminate when k satisfies:                            
(for the original values of x, y).

• Thus the algorithm runs for at most                           iterations.

• Each iteration has only a constant L number of operations, thus 
the total number of operations is at most

• Formally,

• Thus the running time is O(N).
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Running time of Square root algorithm

• The value of (high-low) decreases by a factor of exactly 
2 each iteration.  It starts at max(x,1), and the algorithm 
terminates when it                                                          
goes below .

• Thus the number of                                                
iterations is at most

• The running time is

)/)1,(max(log2 x

)log(log 1 xO

public static double

sqrt(double x, double epsilon){

double low = 0;

double high = x>1 ? x : 1;

while (high-low > epsilon) {

double mid = (high+low)/2;

if (mid*mid > x)

high = mid;

else

low = mid;

}

return low;

}



Newton-Raphson Algorithm 

public static double sqrt(double x, double epsilon){

double r = 1;

while ( Math.abs(r - x/r) > epsilon)

r = (r + x/r)/2;

return r;

}



Newton-Raphson – sample run

Example: Computing sqrt(2) with precision 0.01:

r       x/r        

After 0 rounds       1        2        

After 1 round        1.5      1.33..         

After 2 rounds       1.41..   1.41..

Output: 1.41…

while ( Math.abs(r - x/r) > epsilon)

r = (r + x/r)/2;



Analysis of Running Time

• Correctness is clear since for every r the square root of 
x is between and r and x/r.

• Here we will analyze the running time only for 1<x<2

• Denote:

• Thus                 , where                       after n loops

• At the beginning                , and 

• In general we have that              

• At the end it suffices that           , since

• Thus the algorithm terminates when  

2/)(' rxrr 

2

22

2

2224
22

4

)(

4

42
4/)/('

r

xr

r

xrxxrr
xrxrxr







2
1 nn  xrn  2

4/11 

|||| 2 xrxr  n

n

n
22

10 

1loglog  n



In General…

• The Newton-Raphson method can be used to find the 
roots of any differentiable function f.

• In our case, to find 2, we solved 

• So,
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Example: Sorting problem

•Input: A sequence of n numbers:

•Output: A permutation (reordering)   

of the input sequence such that

Ex. Input: sequence 31, 41, 59, 26, 41, 58

Output: sequence 26, 31, 41, 41, 58, 59
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Correct Algorithms

• An algorithm is said to be correct if, for every input 
instance, it halts with the correct output. We say that a 
correct algorithm solves the given computational 
problem. 

• An incorrect algorithm might not halt at all on some 
input instances, or it might halt with an answer other 
than the desired one.

• Incorrect algorithms can sometimes be useful, if their 
error rate can be controlled. (An example of this when 
we study algorithms for finding large prime numbers.)

28



What kinds of problems are solved by 
algorithms?

• We are given a road map on which the distance between 
each pair of adjacent intersections is marked, and our goal is 
to determine the shortest route from one intersection to 
another.

• We are given a sequence A1, A2, ..., An of n matrices, and 
we wish to determine their product A1. A2. … . An. 

• We are given an equation ax ≡ b (mod n), where a, b, and n 
are integers, and we wish to find all the integers x, modulo n, 
that satisfy the equation.

• We are given n points in the plane, and we wish to find the 
convex hull of these points. The convex hull is the smallest 
convex polygon containing the points. 
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Data structures

•A data structure is a way to store and organize 
data in order to facilitate access and 
modifications. 

•No single data structure works well for all 
purposes, and so it is important to know the 
strengths and limitations of several of them:

• Table, Stacks and Queues, Linked lists
• Representing rooted trees
• Hash tables
• Binary Search Trees
• Red-black trees, …

30



Hard problems

• There are some problems for which no efficient solution 
is known, which are known as NP-complete:

• it is unknown whether or not efficient algorithms exist for 
NP-complete problems.

• the set of NP-complete problems has the remarkable 
property that if an efficient algorithm exists for any one of 
them, then efficient algorithms exist for all of them.

• a small change to the problem statement can cause a big 
change to the efficiency of the best known algorithm.

31



Choosing algorithms

Ex: Fibonacci sequence is defined as follows.

F(0) = 0, F(1) = 1, and

F(n) = F(n-1) + F(n-2) for n > 1.

Write an algorithm to computer F(n).

32



Algorithms 1 and 2 for Fibonacci

function fib1(n){
if n < 2 then return n;
else return fib1(n-1) + fib1(n-2);

} 

function fib2(n){
i= 1; j = 0;
for k = 1 to n do { j = i+j; i = j- i;}
return j;

}
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Algorithm 3 for Fibonacci

function  fib3(n){
i = 1; j = 0; k = 0; h = 1;
while n>0 do {

if (n odd) then {  t = jh; 
j = ih + jk +t;
i = ik +t;}

t = h^2;
h = 2kh+t;
k = k^2+t;
n = n div 2;}

return j;
}

34



35

Example of running times for Fibonacci

n 10 20 30 50 100 10000 1 000

000

10000
0000

fib1 8 ms 1 s 2 min 21 
days

fib2 1/6 
ms

1/3 
ms

½ ms ¾ ms 3/2 
ms

150 
ms

15 s 25 
min

fib3 1/3 
ms

2/5 
ms

½ ms ½ ms ½ ms 1 ms 3/2 
ms

2 ms



Insertion sort
Efficient algorithm for sorting a small number of elements:

• We start with an empty left hand and the cards face down on 
the table. 

• We then remove one card at a time from the table and insert 
it into the correct position in the left hand. To find the correct 
position for a card, we compare it with each of the cards 
already in the hand, from right to left.

INSERTION-SORT(A) 
1. for j←2 to length[A]
2. do key ← A[j]
3. Insert A[j] into the sorted sequence A[1.. j 

- 1].
4. i←j-1 
5. while i>0 and A[i]>key
6. do A[i + 1] ← A[i] 
7. i←i-1
8. A[i+1]←key

36



Example
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Proof of the correctness of 
Insertion sort

•We use loop invariants to help us understand 
why an algorithm is correct. 

•We must show three things about a loop 
invariant:

• Initialization: It is true prior to the first iteration of the loop. 

• Maintenance: If it is true before an iteration of the loop, it 
remains true before the next iteration.

• Termination: When the loop terminates, the invariant 
gives us a useful property that helps show that the 
algorithm is correct.
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Analyzing algorithms

• Analyzing an algorithm: for an input size,
• measure memory (space)

• measure computational time (running time).

• Input size: depends on the problem:
• Sorting: number of items in the input; array size,… O(n)

• Big integer (multiplying, …): number of bits to represent the 
input in binary notation O(log n)

• Two number: input of a graph can be O(n,m), number of 
vertices and number of edges. 

• Running time:

• A constant amount of time is required to execute each line

• each execution of the ith line takes time c_i , where c_i is 
a constant.
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Analyzing of Insertion sort

• For each j = 2, 3, . . . , n, where n = length[A], we 
let t_j be the number of times the while loop test in 
line 5 is executed for that value of j.
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Best case and worst case

• Best case: the array is already sorted

T(n) = c1n + c2(n - 1) + c4(n - 1) + c5(n - 1) + c8(n - 1) 

= (c1 +c2 +c4 +c5 +c8)n-(c2+c4 +c5 +c8) = a n + b

• Worst case: the array is in reverse sorted order
T(n) = a n*n + b n + c
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Worst-case and average-case analysis

• worst-case running time: the longest running time for 
any input of size n:

• upper bound on the running time for any input

• for some algorithms, the worst case occurs fairly often

• the "average case" is often roughly as bad as the worst 
case.

• average-case or expected running time:
• technique of probabilistic analysis

• assume that all inputs of a given size are equally likely

• Difficult to analyze. 
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Designing algorithms

• The divide-and-conquer approach:
• Divide the problem into a number of subproblems.

• Conquer the subproblems by solving them recursively. If the 
sub problem sizes are small enough, however, just solve the 
subproblems in a straightforward manner. 

• Combine the solutions to the subproblems into the solution for 
the original problem.

• Recursive structure: to solve a given problem, they call 
themselves recursively one or more times to deal with 
closely related subproblems.
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Merge sort algorithm 
• Divide: Divide the n-elements sequence to be sorted 

into two subsequences of n/2 elements each.

• Conquer: Sort the two subsequences recursively using 
merge sort. 

• Combine: Merge the two sorted subsequences to 
produce the sorted answer.

MERGE-SORT(A, p, r) 

1.if p < r

2. then q← ⌊(p+r)/2⌋

3. MERGE-SORT(A, p, q)

4. MERGE-SORT(A, q + 1, r) 

5. MERGE(A, p, q, r)
44



Example
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Analyzing divide-and-conquer 
algorithms

• Divide: D(n) = Θ(1).

• Conquer: solve two subproblems, each of size n/2, which 
contributes 2T (n/2) to the running time.

• Combine: the MERGE procedure on an n-element 
subarray takes time Θ(n), so C(n) = Θ(n).

T(n)  = θ(1) if n = 1
2 T(n/2) + θ(n) if n >1  

46

The 
picture 
can't be  
displaye
d.



Growth of Functions

•Asymptotic notation
• The order of growth of the running time of an 

algorithm gives a simple characterization of the 
algorithm's efficiency.

• For input sizes large enough, we make only the order 
of growth of the running time relevant, so we study 
the asymptotic efficiency of algorithms.
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• g(n) is an asymptotically tight bound for f(n):

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and 
N such that 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n) for all n ≥ N}.

• asymptotic upper bound:

O(g(n)) = {f(n): there exist positive constants c and N 
such that 

0 ≤ f(n) ≤ cg(n) for all n ≥ N}.

• asymptotic lower bound:

Ω(g(n)) = {f(n): there exist positive constants c and N 
such that

0 ≤ cg(n) ≤ f(n) for all n ≥ N}.

48
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•o(g(n)) = {f(n) : for any positive constant c > 0, 
there exists a constant N > 0 such that 0 ≤ f(n) 
< cg(n) for all n ≥ N}.

• f(n) = ω(g(n)) if and only if g(n) = o(f(n)).

49
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• f(n) = O(g(n)) ≈ a ≤ b, 

• f(n) = Ω(g(n)) ≈ a ≥ b, 

• f(n) = Θ(g(n)) ≈ a = b, 

• f(n) = o(g(n)) ≈ a < b, 

• f(n) = ω(g(n)) ≈ a > b.

50
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Example

• Order the following functions by O and θ
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Recurrences

•The substitution method

•The recursion method

•The master method
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The substitution method

1. Guess the form of the solution. 

2. Use mathematical induction to find the 
constants and show that the solution works.

• Ex: T(n) = 2 T(n/2) + n.

1. We guess that T(n) = O(n lg n)

2. T(n) ≤ 2(c n/2 lg(n/2)) + n ≤ cn lg(n/2) + n

= cn lg n - cn lg 2 + n = cn lg n - cn + n 

≤ cn lg n
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Recursion method

Sum all the per-level costs to determine the total 
cost of all levels of the recursion.

Ex: T(n) = 3T(n/4)+n

T(n) = n+ 3 T(n/4)

= n + 3(n/4 + 3T(n/16))

= n + 3 n/4 + 3 (n/16 + 3T(n/64))

≤ n + 3n/4 + 9n/16 + …

= O(n^2) 
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The master method

Master theorem: Let a ≥ 1 and b > 1 be constants, let 
f(n) be a function, and let T (n) be defined by 

T(n) = aT(n/b) + f(n)

Then T (n) can be bounded asymptotically as follows.

1.If                                for some constant ε > 0, then 

2.If                                then 

3.If                                 for some constant ε > 0, and 

if a f (n/b) ≤ c(n) for constant c <1 and all sufficiently 
large n, then T (n) = Θ(f (n)).

55



Using the master method

1. T (n) = 9T(n/3) + n.

2. T (n) = T (2n/3) + 1

3. T(n) = 3T(n/4) + n lg n

4. T(n) = 2T(n/2) + n lg n
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Exercices
Suppose we are comparing implementations of insertion 
sort and merge sort on the same machine. For inputs of 
size n, insertion sort runs in 8n2 steps, while merge sort 
runs in 64nlog(n) steps. For which values of n does 
insertion sort beat merge sort?

Rewrite the INSERTION-SORT procedure to sort into 
non-increasing instead of non-decreasing order.

Exercises 2.3-7. Describe a Θ(n lg n)-time algorithm that, 
given a set S of n integers and another integer x, 
determines whether or not there exist two elements in S 
whose sum is exactly x.
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Exercises

Explain why the statement, "The running time of 
algorithm A is at least O(n2)," is meaningless.

Prove that the running time of an algorithm is 
Θ(g(n)) if and only if its worst-case running time 
is O(g(n)) and its best-case running time is 
Ω(g(n)).
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Problems

Inversions Let A[1,.., n] be an array of n distinct

numbers. If i < j and A[i] > A[j], then the pair (i, j) is called 
an inversion of A.

a. List the five inversions of the array: 2, 3, 8, 6, 1. 

b. What array with elements from the set {1, 2, . . . , n} has the 
most inversions? How many does it have? 

c. What is the relationship between the running time of insertion 
sort and the number of inversions in the input array? Justify your 
answer. 

d. Give an algorithm that determines the number of inversions in 
any permutation on n elements in Θ(n lg n) worst-case time. (Hint: 
Modify merge sort.)
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Problems

Recurrence examples
Give asymptotic upper and lower bounds for T(n) in each of 

the following recurrences. T(n) is constant for n ≤ 2. Make 
your bounds as tight as possible, and justify your answers.

a.T(n) = 2T(n/2) + n^3. b.T(n) = T(9n/10) + n. 

c.T(n) = 16T(n/4) + n^2. d.T (n) = 7T(n/3) + n^2. 

e.T(n) = 7T(n/2) + n2. f. T(n) = 2T(n/4) + sqrt(n)

g. T(n)=T(n-1)+n. h. T(n) = T(sqrt(n)) +1 
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Q & A
Please write any feedback regarding class to

sayans@slis.tsukuba.ac.jp
Sub: Informatics class feedback
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